A role for sorting nexin 2 in epidermal growth factor receptor down-regulation: evidence for distinct functions of sorting nexin 1 and 2 in protein trafficking.
نویسندگان
چکیده
Sorting nexin 1 (SNX1) and SNX2, homologues of the yeast vacuolar protein-sorting (Vps)5p, contain a phospholipid-binding motif termed the phox homology (PX) domain and a carboxyl terminal coiled-coil region. A role for SNX1 in trafficking of cell surface receptors from endosomes to lysosomes has been proposed; however, the function of SNX2 remains unknown. Toward understanding the function of SNX2, we first examined the distribution of endogenous protein in HeLa cells. We show that SNX2 resides primarily in early endosomes, whereas SNX1 is found partially in early endosomes and in tubulovesicular-like structures distributed throughout the cytoplasm. We also demonstrate that SNX1 interacts with the mammalian retromer complex through its amino terminal domain, whereas SNX2 does not. Moreover, activated endogenous epidermal growth factor receptor (EGFR) colocalizes markedly with SNX2-positive endosomes, but minimally with SNX1-containing vesicles. To assess SNX2 function, we examined the effect of a PX domain-mutated SNX2 that is defective in vesicle localization on EGFR trafficking. Mutant SNX2 markedly inhibited agonist-induced EGFR degradation, whereas internalization remained intact. In contrast, SNX1 PX domain mutants failed to effect EGFR degradation, whereas a SNX1 deletion mutant significantly inhibited receptor down-regulation. Interestingly, knockdown of SNX1 and SNX2 expression by RNA interference failed to alter agonist-induced EGFR down-regulation. Together, these findings suggest that both SNX1 and SNX2 are involved in regulating lysosomal sorting of internalized EGFR, but neither protein is essential for this process. These studies are the first to demonstrate a function for SNX2 in protein trafficking.
منابع مشابه
Sorting nexin-2 is associated with tubular elements of the early endosome, but is not essential for retromer-mediated endosome-to-TGN transport.
Sorting nexins are a large family of phox-homology-domain-containing proteins that have been implicated in the control of endosomal sorting. Sorting nexin-1 is a component of the mammalian retromer complex that regulates retrieval of the cation-independent mannose 6-phosphate receptor from endosomes to the trans-Golgi network. In yeast, retromer is composed of Vps5p (the orthologue of sorting n...
متن کاملEssential role of RGS-PX1/sorting nexin 13 in mouse development and regulation of endocytosis dynamics.
RGS-PX1 (also known as sorting nexin 13) is a member of both the regulator of G protein signaling (RGS) and sorting nexin (SNX) protein families. Biochemical and cell culture studies have shown that RGS-PX1/SNX13 attenuates Galphas-mediated signaling through its RGS domain and regulates endocytic trafficking and degradation of the epidermal growth factor receptor. To understand the functions of...
متن کاملAn epidermal growth factor (EGF) -dependent interaction between GIT1 and sorting nexin 6 promotes degradation of the EGF receptor.
G-protein coupled receptor (GPCR) kinase-2 interacting protein 1 (GIT1) is a multifunctional scaffolding protein that regulates epidermal growth factor receptor (EGFR) signaling pathways. We demonstrate that GIT1 interacts with sorting nexin 6 (SNX6), a member of the SNX family that increases EGFR trafficking between endosomes and lysosomes, thereby enhancing EGFR degradation. The GIT1-SNX6 int...
متن کاملIdentification and characterization of SNX15, a novel sorting nexin involved in protein trafficking.
Sorting nexins are a family of phox homology domain containing proteins that are homologous to yeast proteins involved in protein trafficking. We have identified a novel 342-amino acid residue sorting nexin, SNX15, and a 252-amino acid splice variant, SNX15A. Unlike many sorting nexins, a SNX15 ortholog has not been identified in yeast or Caenorhabditis elegans. By Northern blot analysis, SNX15...
متن کاملSorting nexin 1 down-regulation promotes colon tumorigenesis.
PURPOSE Colon cancer is one of the most common human malignancies, yet studies have only begun to identify the multiple mechanisms that underlie the development of this tumor. In this study, we have identified a novel mechanism, dysregulation of endocytic sorting, which promotes colon cancer development. EXPERIMENTAL DESIGN Immunohistochemical and microarray analyses were done on human colon ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology of the cell
دوره 15 5 شماره
صفحات -
تاریخ انتشار 2004